
Chapter VII.

Optimal stopping in mathematical finance

25. The American option

25.1. Infinite horizon

1. According to theory of modern finance (see e.g. [197]) the arbitrage-free price
of the American put option with infinite horizon (perpetual option) is given by

V (x) = sup
τ

Ex

(
e−rτ(K −Xτ )+

)
(25.1.1)

where the supremum is taken over all stopping times τ of the geometric Brownian
motion X = (Xt)t≥0 solving

dXt = rXt dt + σXt dBt (25.1.2)

with X0 = x > 0 under Px . We recall that B = (Bt)t≥0 is a standard Brownian
motion process started at zero, r > 0 is the interest rate, K > 0 is the strike
(exercise) price, and σ > 0 is the volatility coefficient.

The equation (25.1.2) under Px has a unique (strong) solution given by

Xt = x exp
(
σBt + (r−σ2/2)t

)
(25.1.3)

for t ≥ 0 and x > 0 . The process X is strong Markov (diffusion) with the
infinitesimal generator given by

LX = rx
∂

∂x
+

σ2

2
x2 ∂2

∂x2
. (25.1.4)

The aim of this subsection is to compute the arbitrage-free price V from (25.1.1)
and to determine the optimal exercise time τ∗ (at which the supremum in (25.1.1)
is attained).
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2. The optimal stopping problem (25.1.1) will be solved in two steps. In the
first step we will make a guess for the solution. In the second step we will verify
that the guessed solution is correct (Theorem 25.1).

From (25.1.1) and (25.1.3) we see that the closer X gets to 0 the less likely
that the gain will increase upon continuation. This suggests that there exists a
point b ∈ (0, K) such that the stopping time

τb = inf {t ≥ 0 : Xt ≤ b} (25.1.5)

is optimal in the problem (25.1.1). [In (25.1.5) we use the standard convention
that inf(∅) = ∞ (see Remark 25.2 below).]

Standard arguments based on the strong Markov property (cf. Chapter III)
lead to the following free-boundary problem for the unknown value function V
and the unknown point b :

LXV = rV for x > b, (25.1.6)

V (x) = (K − x)+ for x = b, (25.1.7)
V ′(x) = −1 for x = b (smooth fit), (25.1.8)

V (x) > (K − x)+ for x > b, (25.1.9)

V (x) = (K − x)+ for 0 < x < b. (25.1.10)

3. To solve the free-boundary problem note that the equation (25.1.6) us-
ing (25.1.4) reads

Dx2V ′′ + rxV ′ − rV = 0 (25.1.11)

where we set D = σ2/2 . One may now recognize (25.1.11) as the Cauchy–Euler
equation. Let us thus seek a solution in the form

V (x) = xp. (25.1.12)

Inserting (25.1.12) into (25.1.11) we get

p2 −
(
1− r

D

)
p − r

D
= 0. (25.1.13)

The quadratic equation (25.1.13) has two roots, p1 = 1 and p2 = −r/D . Thus
the general solution of (25.1.11) can be written as

V (x) = C1 x + C2 x−r/D (25.1.14)

where C1 and C2 are undetermined constants. From the fact that V (x) ≤ K
for all x > 0 , we see that C1 must be zero. Thus (25.1.7) and (25.1.8) become
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two algebraic equations in two unknowns C2 and b (free-boundary). Solving this
system one gets

C2 =
D

r

( K

1 + D/r

)1+r/D

, (25.1.15)

b =
K

1 + D/r
. (25.1.16)

Inserting (25.1.15) into (25.1.14) upon using that C1 = 0 we conclude that

V (x) =

⎧⎨⎩D
r

(
K

1+D/r

)1+r/D

x−r/D if x ∈ [b,∞),

K − x if x ∈ (0, b].
(25.1.17)

Note that V is C2 on (0, b) ∪ (b,∞) but only C1 at b . Note also that V is
convex on (0,∞) .

4. In this way we have arrived at the two conclusions of the following theorem.

Theorem 25.1. The arbitrage-free price V from (25.1.1) is given explicitly by
(25.1.17) above. The stopping time τb from (25.1.5) with b given by (25.1.16)
above is optimal in the problem (25.1.1).

Proof. To distinguish the two functions let us denote the value function from
(25.1.1) by V∗(x) for x > 0 . We need to prove that V∗(x) = V (x) for all x > 0
where V (x) is given by (25.1.17) above.

1◦. The properties of V stated following (25.1.17) above show that Itô’s
formula (page 67) can be applied to e−rtV (Xt) in its standard form (cf. Subsection
3.5). This gives

e−rtV (Xt) = V (x) +
∫ t

0

e−rs(LXV − rV )(Xs)I(Xs �= b) ds (25.1.18)

+
∫ t

0

e−rsσXsV
′(Xs) dBs.

Setting G(x) = (K − x)+ we see that (LXG − rG)(x) = −rK < 0 so that
together with (25.1.6) we have

(LXV − rV ) ≤ 0 (25.1.19)

everywhere on (0,∞) but b . Since Px(Xs = b) = 0 for all s and all x , we see
that (25.1.7), (25.1.9)–(25.1.10) and (25.1.18)–(25.1.19) imply that

e−rt(K − Xt)+ ≤ e−rtV (Xt) ≤ V (x) + Mt (25.1.20)

where M = (Mt)t≥0 is a continuous local martingale given by

Mt =
∫ t

0

e−rsσXsV
′(Xs) dBs. (25.1.21)
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(Using that |V ′(x)| ≤ 1 for all x > 0 it is easily verified by standard means that
M is a martingale.)

Let (τn)n≥1 be a localization sequence of (bounded) stopping times for M
(for example τn ≡ n will do). Then for every stopping time τ of X we have by
(25.1.20) above

e−r(τ∧τn)(K − Xτ∧τn)+ ≤ V (x) + Mτ∧τn (25.1.22)

for all n ≥ 1 . Taking the Px -expectation, using the optional sampling theorem
(page 60) to conclude that ExMτ∧τn = 0 for all n , and letting n → ∞ , we find
by Fatou’s lemma that

Ex

(
e−rτ (K − Xτ )+

) ≤ V (x). (25.1.23)

Taking the supremum over all stopping times τ of X we find that V∗(x) ≤ V (x)
for all x > 0 .

2◦. To prove the reverse inequality (equality) we observe from (25.1.18) upon
using (25.1.6) (and the optional sampling theorem as above) that

Ex

(
e−r(τb∧τn)V (Xτb∧τn)

)
= V (x) (25.1.24)

for all n ≥ 1 . Letting n → ∞ and using that e−rτbV (Xτb
) = e−rτb(K − Xτb

)+

(both expressions being 0 when τb = ∞ ), we find by the dominated convergence
theorem that

Ex

(
e−rτb(K − Xτb

)+
)

= V (x). (25.1.25)

This shows that τb is optimal in (25.1.1). Thus V∗(x) = V (x) for all x > 0 and
the proof is complete. �

Remark 25.2. It is evident from the definition of τb in (25.1.5) and the explicit
representation of X in (25.1.3) that τb is not always finite. Using the well-known
Doob formula (see e.g. [197, Chap. VIII, § 2a, (51)])

P
(

sup
t≥0

(Bt − αt) ≥ β
)

= e−2αβ (25.1.26)

for α > 0 and β > 0 , it is straightforwardly verified that

Px(τb < ∞) =

⎧⎨⎩ 1 if r ≤ D or x ∈ (0, b],(
b
x

)(r/D)−1

if r > D and x ∈ (b,∞)
(25.1.27)

for x > 0 .




