Chapter VII.

Optimal stopping in mathematical finance

25. The American option

25.1. Infinite horizon

1. According to theory of modern finance (see e.g. [197]) the arbitrage-free price of the *American put option* with *infinite horizon* (perpetual option) is given by

$$V(x) = \sup_{\tau} \mathsf{E}_x \left(e^{-r\tau} (K - X_\tau)^+ \right)$$
(25.1.1)

where the supremum is taken over all stopping times τ of the geometric Brownian motion $X = (X_t)_{t \ge 0}$ solving

$$dX_t = rX_t \, dt + \sigma X_t \, dB_t \tag{25.1.2}$$

with $X_0 = x > 0$ under P_x . We recall that $B = (B_t)_{t \ge 0}$ is a standard Brownian motion process started at zero, r > 0 is the interest rate, K > 0 is the strike (exercise) price, and $\sigma > 0$ is the volatility coefficient.

The equation (25.1.2) under P_x has a unique (strong) solution given by

$$X_t = x \exp(\sigma B_t + (r - \sigma^2/2)t)$$
(25.1.3)

for $t \ge 0$ and x > 0. The process X is strong Markov (diffusion) with the infinitesimal generator given by

$$\mathbb{L}_X = r x \frac{\partial}{\partial x} + \frac{\sigma^2}{2} x^2 \frac{\partial^2}{\partial x^2}.$$
 (25.1.4)

The aim of this subsection is to compute the arbitrage-free price V from (25.1.1) and to determine the optimal exercise time τ_* (at which the supremum in (25.1.1) is attained).

2. The optimal stopping problem (25.1.1) will be solved in two steps. In the first step we will make a guess for the solution. In the second step we will verify that the guessed solution is correct (Theorem 25.1).

From (25.1.1) and (25.1.3) we see that the closer X gets to 0 the less likely that the gain will increase upon continuation. This suggests that there exists a point $b \in (0, K)$ such that the stopping time

$$\tau_b = \inf \{ t \ge 0 : X_t \le b \}$$
(25.1.5)

is optimal in the problem (25.1.1). [In (25.1.5) we use the standard convention that $\inf(\emptyset) = \infty$ (see Remark 25.2 below).]

Standard arguments based on the strong Markov property (cf. Chapter III) lead to the following *free-boundary problem* for the *unknown value function* V and the *unknown point* b:

$$\mathbb{L}_X V = rV \qquad \text{for } x > b, \qquad (25.1.6)$$

$$V(x) = (K - x)^+$$
 for $x = b$, (25.1.7)

$$V'(x) = -1$$
 for $x = b$ (smooth fit), (25.1.8)

$$V(x) > (K - x)^+$$
 for $x > b$, (25.1.9)

$$V(x) = (K - x)^+$$
 for $0 < x < b$. (25.1.10)

3. To solve the free-boundary problem note that the equation (25.1.6) using (25.1.4) reads

$$Dx^2V'' + rxV' - rV = 0 (25.1.11)$$

where we set $D = \sigma^2/2$. One may now recognize (25.1.11) as the Cauchy–Euler equation. Let us thus seek a solution in the form

$$V(x) = x^p. (25.1.12)$$

Inserting (25.1.12) into (25.1.11) we get

$$p^{2} - \left(1 - \frac{r}{D}\right)p - \frac{r}{D} = 0.$$
 (25.1.13)

The quadratic equation (25.1.13) has two roots, $p_1 = 1$ and $p_2 = -r/D$. Thus the general solution of (25.1.11) can be written as

$$V(x) = C_1 x + C_2 x^{-r/D}$$
(25.1.14)

where C_1 and C_2 are undetermined constants. From the fact that $V(x) \leq K$ for all x > 0, we see that C_1 must be zero. Thus (25.1.7) and (25.1.8) become

two algebraic equations in two unknowns C_2 and b (free-boundary). Solving this system one gets

$$C_2 = \frac{D}{r} \left(\frac{K}{1+D/r}\right)^{1+r/D},$$
(25.1.15)

$$b = \frac{K}{1 + D/r}.$$
 (25.1.16)

Inserting (25.1.15) into (25.1.14) upon using that $C_1 = 0$ we conclude that

$$V(x) = \begin{cases} \frac{D}{r} \left(\frac{K}{1+D/r}\right)^{1+r/D} x^{-r/D} & \text{if } x \in [b, \infty), \\ K-x & \text{if } x \in (0, b]. \end{cases}$$
(25.1.17)

Note that V is C^2 on $(0,b) \cup (b,\infty)$ but only C^1 at b. Note also that V is convex on $(0,\infty)$.

4. In this way we have arrived at the two conclusions of the following theorem.

Theorem 25.1. The arbitrage-free price V from (25.1.1) is given explicitly by (25.1.17) above. The stopping time τ_b from (25.1.5) with b given by (25.1.16) above is optimal in the problem (25.1.1).

Proof. To distinguish the two functions let us denote the value function from (25.1.1) by $V_*(x)$ for x > 0. We need to prove that $V_*(x) = V(x)$ for all x > 0 where V(x) is given by (25.1.17) above.

1°. The properties of V stated following (25.1.17) above show that Itô's formula (page 67) can be applied to $e^{-rt}V(X_t)$ in its standard form (cf. Subsection 3.5). This gives

$$e^{-rt}V(X_t) = V(x) + \int_0^t e^{-rs} (\mathbb{L}_X V - rV)(X_s) I(X_s \neq b) \, ds \qquad (25.1.18)$$
$$+ \int_0^t e^{-rs} \sigma X_s V'(X_s) \, dB_s.$$

Setting $G(x) = (K - x)^+$ we see that $(\mathbb{L}_X G - rG)(x) = -rK < 0$ so that together with (25.1.6) we have

$$\left(\mathbb{L}_X V - rV\right) \le 0 \tag{25.1.19}$$

everywhere on $(0,\infty)$ but b. Since $\mathsf{P}_x(X_s=b)=0$ for all s and all x, we see that (25.1.7), (25.1.9)–(25.1.10) and (25.1.18)–(25.1.19) imply that

$$e^{-rt}(K - X_t)^+ \le e^{-rt}V(X_t) \le V(x) + M_t$$
 (25.1.20)

where $M = (M_t)_{t \ge 0}$ is a continuous local martingale given by

$$M_t = \int_0^t e^{-rs} \sigma X_s V'(X_s) \, dB_s.$$
 (25.1.21)

(Using that $|V'(x)| \leq 1$ for all x > 0 it is easily verified by standard means that M is a martingale.)

Let $(\tau_n)_{n\geq 1}$ be a localization sequence of (bounded) stopping times for M (for example $\tau_n \equiv n$ will do). Then for every stopping time τ of X we have by (25.1.20) above

$$e^{-r(\tau \wedge \tau_n)} (K - X_{\tau \wedge \tau_n})^+ \le V(x) + M_{\tau \wedge \tau_n}$$
(25.1.22)

for all $n \ge 1$. Taking the P_x -expectation, using the optional sampling theorem (page 60) to conclude that $\mathsf{E}_x M_{\tau \land \tau_n} = 0$ for all n, and letting $n \to \infty$, we find by Fatou's lemma that

$$\mathsf{E}_x(e^{-r\tau}(K-X_{\tau})^+) \le V(x).$$
 (25.1.23)

Taking the supremum over all stopping times τ of X we find that $V_*(x) \leq V(x)$ for all x > 0.

 2° . To prove the reverse inequality (equality) we observe from (25.1.18) upon using (25.1.6) (and the optional sampling theorem as above) that

$$\mathsf{E}_x\Big(e^{-r(\tau_b \wedge \tau_n)}V(X_{\tau_b \wedge \tau_n})\Big) = V(x) \tag{25.1.24}$$

for all $n \ge 1$. Letting $n \to \infty$ and using that $e^{-r\tau_b}V(X_{\tau_b}) = e^{-r\tau_b}(K - X_{\tau_b})^+$ (both expressions being 0 when $\tau_b = \infty$), we find by the dominated convergence theorem that

$$\mathsf{E}_{x}\left(e^{-r\tau_{b}}(K-X_{\tau_{b}})^{+}\right) = V(x). \tag{25.1.25}$$

This shows that τ_b is optimal in (25.1.1). Thus $V_*(x) = V(x)$ for all x > 0 and the proof is complete.

Remark 25.2. It is evident from the definition of τ_b in (25.1.5) and the explicit representation of X in (25.1.3) that τ_b is not always finite. Using the well-known Doob formula (see e.g. [197, Chap. VIII, §2a, (51)])

$$\mathsf{P}\Big(\sup_{t\geq 0}(B_t - \alpha t) \geq \beta\Big) = e^{-2\alpha\beta}$$
(25.1.26)

for $\alpha > 0$ and $\beta > 0$, it is straightforwardly verified that

$$\mathsf{P}_{x}(\tau_{b} < \infty) = \begin{cases} 1 & \text{if } r \leq D \text{ or } x \in (0, b], \\ \left(\frac{b}{x}\right)^{(r/D)-1} & \text{if } r > D \text{ and } x \in (b, \infty) \end{cases}$$
(25.1.27)

for x > 0.